Browse Source

根据数据作调整并优化

晏永年 4 years ago
parent
commit
1ecd88378a
1 changed files with 48 additions and 36 deletions
  1. 48 36
      src/main/scala/com/winhc/bigdata/spark/jobs/JustiCase.scala

+ 48 - 36
src/main/scala/com/winhc/bigdata/spark/jobs/JustiCase.scala

@@ -8,9 +8,8 @@ import org.apache.spark.sql.{Row, SparkSession}
 import scala.annotation.meta.getter
 import scala.collection.mutable
 import com.winhc.bigdata.spark.utils.BaseUtil.{BKDRHash, isWindows}
-import org.apache.spark.sql.types.{LongType, MapType, StringType, StructField, StructType}
+import org.apache.spark.sql.types.{StringType, StructField, StructType}
 import com.winhc.bigdata.spark.udf.BaseFunc
-import org.apache.spark.sql.functions.col
 
 case class JustiCase(s: SparkSession,
                      project: String, //表所在工程名
@@ -35,7 +34,20 @@ case class JustiCase(s: SparkSession,
          |FROM    $project.inc_ods_$tableName
          |WHERE   ds=${inc_ods_ds} AND ${toCol} IS NOT NULL AND LENGTH(${fromCol})>1
          |""".stripMargin)
-    val edgeRDD = dfRelations.select(allCols.map(column => col(column).cast("string")): _*).rdd.flatMap(r => {
+    /*
+          s"""SELECT *,get_justicase_id(case_no) AS case_no_hash FROM (
+             |SELECT '(2016)赣04民终1687号' AS case_no, '(2016)赣0429民初650号' AS connect_case_no
+             |UNION
+             |SELECT '(2020)鄂0606民初2872号' AS case_no, '(2020)冀0984执486号' AS connect_case_no
+             |UNION
+             |SELECT '(2020)赣0302财保10号' AS case_no, '(2020)冀0984执486号' AS connect_case_no
+             |UNION
+             |SELECT '(2017)粤0608民初2531号' AS case_no, '(2017)粤0608执1658号' AS connect_case_no
+             |UNION
+             |SELECT '(2016)赣0429民初650号' AS case_no, '(2020)赣0302财保10号' AS connect_case_no)
+             |""".stripMargin)
+    */
+    val edgeRDD = dfRelations /*.select(allCols.map(column => col(column).cast("string")): _*)*/ .rdd.flatMap(r => {
       val case_no_from = r.getAs[String](fromCol)
       val case_no_tos = r.getAs[String](toCol)
       //      val allColsMap = allCols.map(f => (f, r.getAs[String](f))).toMap
@@ -43,56 +55,56 @@ case class JustiCase(s: SparkSession,
       var edges: Set[Edge[String]] = Set[Edge[String]]()
       for (each <- case_no_tos.split("\n")) {
         val to = BKDRHash(each)
-        edges += Edge(from, to, "1")
+        edges += Edge(from, to)
       }
       edges
     })
     // 根据边构造图
-    val graph: Graph[String, String] = Graph.fromEdges(edgeRDD, defaultValue = "")
-
-    // 获取连通分量
-    val connetedGraph: Graph[VertexId, String] = graph.connectedComponents()
+    val graph = Graph.fromEdges(edgeRDD, defaultValue = "")
 
     // 将同一连通分量中各个边聚合,经过处理形成打平的(case_no->司法案件id)并与原表join补全信息
-    val tripleRDD = connetedGraph.triplets.map(t => (t.srcAttr, Set((t.dstId, t.attr))))
+    val tripleRDD = graph.connectedComponents().vertices
+      .map(tp => (tp._2, tp._1)) //尝试N次明确必须这样交换,否则得到的不是极大连通子图
+      .map(r => (r._1, Set(r._2)))
       .reduceByKey(_ ++ _)
       .flatMap(r => {
-        val ss = Set((r._1, "0")) ++ r._2
-        val justicase_id = BKDRHash(ss.map(_._1).toSeq.sorted.mkString(","))
+        val justicase_id = BKDRHash(r._2.toSeq.sorted.mkString(","))
         var mp: Map[Long, Map[String, String]] = Map()
-        ss.map(r => {
-          mp = mp ++ Map(r._1 -> Map("justicase_id" -> justicase_id.toString))
+        r._2.map(r => {
+          mp = mp ++ Map(r -> Map("justicase_id" -> justicase_id.toString))
         })
         mp
       }).map(r => {
-      Row(r._1.toString, r._2("justicase_id"))
+      Row(r._1.toString, r._2("justicase_id"), "1")
     })
     val schemaJust = StructType(Array(
       StructField("case_no_hash", StringType),
-      StructField("justicase_id", StringType)
+      StructField("justicase_id", StringType),
+      StructField("flag", StringType)
     ))
-    val dfJust = spark.createDataFrame(tripleRDD, schemaJust)
-    dfJust.join(dfRelations, "case_no_hash") //有边的case_no补全信息
-      .drop("case_no_hash")
-      .union(sql( //孤立的case_no
-        s"""
-           |SELECT  get_justicase_id(CASE_NO) AS justicase_id, *
-           |FROM    $project.ods_$tableName
-           |WHERE   ds=${ods_ds}  AND ${toCol} IS NOT NULL AND LENGTH(${fromCol})<=1
-           |UNION
-           |SELECT  get_justicase_id(CASE_NO) AS justicase_id, *
-           |FROM    $project.inc_ods_$tableName
-           |WHERE   ds=${inc_ods_ds} AND ${toCol} IS NOT NULL AND LENGTH(${fromCol})<=1
-           |""".stripMargin))
-      .createOrReplaceTempView(s"tmp_graphx_$tableName")
-
+    //仅包含这3个字段的表在后面融入全量时再实例其他属性
+    val dfEdgelets = spark.createDataFrame(tripleRDD, schemaJust).createOrReplaceTempView(s"tmp_edgelets_$tableName")
+    //将图结果融入全量数据中,case_no对应的司法案件号以图为准
     sql(
-      s"""
-         |INSERT ${if (isWindows) "INTO" else "OVERWRITE"} TABLE ${project}.inc_ads_${tableName}_graphx PARTITION(ds='$inc_ods_ds')
-         |SELECT case_no, justicase_id, ${allCols.filter(_ != "case_no").mkString(",")}
-         |FROM
-         |    tmp_graphx_$tableName
-         |""".stripMargin)
+      s"""INSERT ${if (isWindows) "INTO" else "OVERWRITE"} TABLE ${project}.inc_ads_${tableName}_graphx PARTITION(ds='$inc_ods_ds')
+         |SELECT IF(B.case_no_hash IS NOT NULL,B.justicase_id,A.case_no_hash) AS justicase_id
+         |,IF(B.case_no_hash IS NOT NULL,B.flag,A.flag) AS flag
+         |,${allCols.mkString(",")}
+         |FROM(
+         |  SELECT  get_justicase_id(CASE_NO) AS case_no_hash, '0' AS flag, *
+         |  FROM    $project.ods_$tableName
+         |  WHERE   ds=${ods_ds}  AND ${toCol} IS NOT NULL
+         |  UNION
+         |  SELECT  get_justicase_id(CASE_NO) AS case_no_hash, '0' AS flag, *
+         |  FROM    $project.inc_ods_$tableName
+         |  WHERE   ds=${inc_ods_ds} AND ${toCol} IS NOT NULL
+         |) A
+         |LEFT JOIN
+         |(
+         |  SELECT case_no_hash, justicase_id , flag FROM tmp_edgelets_$tableName
+         |) B
+         |ON A.case_no_hash=B.case_no_hash
+         |""".stripMargin)//.createOrReplaceTempView(s"tmp_graphx_$tableName")
   }
 }